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Common Subwords and Subsequences 

Let us now turn to the problem of finding Common Subwords and Subsequences 

between two sequences. 

(Refer Slide Time: 00:09) 

So, the first problem we look is what is called a longest common subword problem. So, 

let us suppose we are given two words for the moment, let us just assume there going in 

English or a language like that, we given two strings and we want to find the length of 

the longest common subword between them. In a subword, it is just a segment, so far 

instants, if I have secret and secretary and the longest common subword is just the prefix 

secret and it has length 6, between bisect and trisect, I have this common segment isect. 

If I bisect and secret on the other hand, then the common subword is of length 3, namely 

sec and if I have director and secretary, then there are actually only two length subwords 

and there are two of them, so ec occurs in both of them and so does re. So, we may have 

more than one candidate for the longest common subword, but our main through goal at 

the moment is to compute not the subword itself, but the length, we will see how we can 
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recover this subword quit easily from the length calculation. So, the focus at the moment 

is to get the length of the subword. 

(Refer Slide Time: 01:28) 

 

So, let us look at this thing more formally, so we have two words a 0 to a m and b 0 to b 

n, and now what we want to say is that if I write out a 0, a 1, then have a position a i, a i 

plus 1 and so on, then a m. So, if I can find some segments starting with a i and b j, such 

that if I start from here and I read of k letters, then start from b j and I read of k letters. 

So, I read a i a i plus 1 up to k minus 1, i plus k minus 1 and b j, b j plus 1 and b j plus k 

minus 1. 

Then these are both are k line segment which are equal, then I will say that u and v have 

a common subword of length k. So, there must be a matching sub segment of the word 

and now, the aim is to find the length of the longest such segment. So, the longest 

common subword of u and w. 
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So, here is a Brute force algorithm, you just try out every position, you look at every a i 

and b j, so you look at every i and j, i between 0 and m and j between 0 and n. And then I 

just keep looking, I look at the, if these two match, I look at the next letter and go on and 

I keep going until I find two positions which do not match. Then I know that the longest 

subword starting from these two positions is only mismatch, so I match a b i a plus 1 b i 

plus 1 as for as possible may keep track of the longest such match, I do this for every a i 

and b j. 

So, if m is greater than n, then first of all the number of choices of a i and b j is m times n 

and in general, I will go to the length of the end of the shorter word matching everything. 

So, I could do order n word before I reach the end of this scan, everything matches until 

the end of the shorter word, then I put do order n word. So, therefore, this will be O of m 

times n into n or O m n square. So, now, our goal is to see, whether we can make this 

more efficient by doing something inductive. 
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(Refer Slide Time: 03:41) 

 

So, the first observation in the inductive observation is that if I have a i a i plus 1, if I 

have b j b j plus 1. So, if I have a subword staring from here of length k, then look at the 

next position and go forward, it is must be a subword of length k minus 1. So, there is a 

common subword of length k at i j, if and only if there is a long common subword of 

length k minus 1 and i plus 1 and j plus 1. 

So, in other words I look at i j, if i j is equal, then there is possible to start a word at 

common subword at a i and b j. So, if a i is equal to b j, I look at the longest common 

subword I could have bought i plus 1 and j plus 1 and add 1 to it. On the other hand, if a i 

not equal to b j, then I cannot have a common subword adding to it, because the very 

first let it does not match. So, then I just the length of the longest common subword 

starting at that position 0. So, this gives us a handle on the inductive structure. 

So, I look at two positions, if there not equal, I declare that there is no common subwords 

starting there, if they are equal, then I postpond the problem to the next position and add 

1 to whatever I get in next position. In the boundary condition is when one of the words 

is empty, then we have no let us left, so we cannot extend one of the words any more, we 

cannot go forward, then we can say that there cannot be a common subword, because 

there are no letters to use from one of the common subwords. 
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So, for convenience, all though our words go from a 0 to a m and from b 0 to b m, we 

will allow a m plus oneth position and an n plus oneth position. So, we will have 

positions 0 to m plus 1 in u and 0 to n plus 1 in v, so m plus 1 means I have gone beyond 

the last position in u and exhausted all the letters. Likewise n plus 1 in b means we have 

reach the end of the word in v. 

So, what we said is that if we are reach the end of the word in u, then no matter where we 

are in v, there is no commons of word, so length of the common subword is 0. Likewise, 

if we have reach the end of the word in v, wherever we are in u, there is no common 

subword length is 0. So, if we are not in these two cases, we are not in the end of the 

word, then we check whether a i equal to b j, if a i is not equal to b j, we declare as we 

saw earlier with longest common subword has length 0. Otherwise, we inductively 

compute the value of in next position in the both of words and add 1 to it, because we 

can extended that word by 1, because a i equal to b j. 
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So, we could write a memorized recursive function for that, but we will directly try to 

compute a dynamic programming solution for this problem. So, we will typically have 

these sub problems of the form LCW, i j; these are the basic sub problem. So, what we 

are saw from the earlier thing is that if I have a i equal to b j, I need to look at a i plus 1, 

b j plus 1, so LC, IW, LCW i j depends on LCW i plus 1 and j plus 1. We are this kind of 

the subproblem dependency, at every point a value needs to look to the one which is 

below. 

So, we have in this to be clear this is our i and this is our j, so it has to look down and 

write. So, therefore with our convention that we draw the arrays backward that is, if this 

square depends on this square, then we draw an arrow, indicating the dependency in 

reverse. So, I need to compute the bottom of the arrow, before I get to that down arrow, 

that is what the arrow, I need to compute this, before I can compute this. So, now, we can 

start at this corner, because this depends on nothing and then start working. 
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So, as we saw at the boundary, where I have exhausted one word, where either the first 

word or the second word is. So, we have return the word by bisect and secret this 2, tell 

us what the values of a i and b j. So, these are the values of a I and these are the values of 

b j, so these are my two words. So, initially at the boundary every longest common 

subword is 0, because one of the two words is empty and now, I can do it say row by row 

or column by column. So, let us do it by column for a change. 

So, now, at this point we had that a 5 is equal to b 5, therefore we get 1 plus LCW of 6, 6 

and therefore we get a 1, everywhere else c and t, e and t, then are at the t. So, 

everywhere else, it is just 0, because the value do not match. So, if I go to the previous or 

column now. Here, the only one that has anything to say is e and e, but there because the 

next one is 0. So, I get 1 plus 0 is 1. 

If I go to the previous one, in fact the value no, there is no r in bisect, so therefore, all the 

values the subword is 0, if I come to the next thing, again now I have one place where c 

and c match. So, I say that the longest common subword starting here is 1 plus whatever 

happens that t and r, but t and r do not match with 1 plus 0 and so on, but now because 

this c is now proceeded by an e. 

So, at this e I find that it is 1 plus whatever happens to the bottom, so it 1 plus 1 is 2 and 

likewise at s, I find that s and s match and it is 1 plus whatever is bottom right is 
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becomes 3. So, we identify this way, we put an entry 3. So, in this particular table, it is a 

bit mysterious, where the answer is. 

(Refer Slide Time: 09:33) 

 

So, what we have to do is find the entry with a largest value, in this case 2 comma 0, this 

is our largest value. So, this tells us that between these two words, the longest common 

subword has length 3. As I said before, we are only computing the longest common 

subword, so how do we actually find the subword. Well, we can actually in this case, 

very easily read it off, we know that there is a longest common subword here of length 3; 

that means, that it must be succeeded by the word length 2 and so on. 
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So, this particular diagonal tells us what the letters in the word are and if I just project 

this diagonal on to both the one column, I get the word in c, c. So, in this example as we 

see, once we computed the length, it is very easy to read of this solution. 

(Refer Slide Time: 10:22) 

 

So, here is some code for this particular algorithm, the dynamic programming version, 

just to make it less confusing, I have explicitly used the variables r and c, instead of i and 

j. So, r is the row, it was this way and c goes this way. So, what we say is that initially if 
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I am looking at the last column, these are all 0’s and you looking at the bottom row, 

remember that the numbering is from 0 to n plus 1 and from 0 to m plus 1. 

So, we looking the bottom row, when the row number is n plus 1, every column is 0. So, 

this puts the 0’s. So, these two lines just populate things, now we have to find, remember 

the goal is to find the maximum position in the entire array in order to give the answer 

finally, so we just keep track of that with the value here. So, we initial assume that the 

maximum common subword of length 0. 

Now, what we do is, we just go column by column and row by row, so we go to each 

column from n to 0, so we do column by column and each column, we go row by row 

from bottom to top, m to 0. We look at the word position r and position c is u, r equal to 

b, c. If so I add 1, should be LCW, so if I have u a bar is equal to d of c, then the longest 

common word, length will longest common subword r c 1 plus add r plus 1 c plus 1. 

Otherwise, if 0, because there is no common word and if the new value of computed is 

bigger than the value as seen so far, then I will updated to the current value and finally, 

the end this returns length. So, this is a straight forward iterate of way to process this 

thing column by column, you could invert these two induces and it row by row, so that is 

an exercise. 

(Refer Slide Time: 12:27) 
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